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WALSH-FUNCTION REPRLSENTATION OF SHIFT REGISTERS

WITH STOCHASTIC INPUTS
A.Udaya Shankar and David K. Cheng

Electrical and Computer Engineering Department, Syracuse University,
Syracuse, New York

ABSTRACT
A Walsh-Hadamard description for the operation of linear-feedback
shift registers is presented. It is used to study the transient and

steady-state behavior at the outputs of shift registers with respect to

a stochastic input and an initial register state.

Introduction

Despite the wide-spread use of linear feedback shift registers
(LFSRs), a method for determining the transient and steady-state output
statistics of an LFSR in a noisy environment under an initial register
state does not appear to be available. In this article we make use of a
Walsh-Hadamard representation for the outputs and the external input and
characterize the LFSR operation by a set of time-recursive equations over
the reals. The equations can be arranged in a matrix form where the matrix
involved is sparse and can be written by an inspection of the LFSR. Given
a description of the LFSR's initial state and external inputs that are
white and stationary, the Walsh-Hadamard representation allows an easy
computation of the transient and steady-state output statistics and dis-

plays the convergence of the transients in an elegant manner.
Preliminaries

1
Figure 1 is a schematic of an n-stage LFSR , where the feedback

coefficients ags Agseees A g are 0 or 1 with a 1 indicating a tap. To




ensure a genuine n-stage LFSR we insist that B o 1. The feedback at
n-1

time t is § akyk(t—l), where § denotes modulo-2 addition. The transi-
k=0

tions of the LFSR are then described by

]

n-1
¥ (€} = 2(e-1) B kgb a, y, (t-1) (1)

yk(t) = yk~1(t—1), for 0<k<n (2)

For any variable, say x, ranging over {0,1,...,2n—1}, we denote its

binary representation <x > by Xx. On the domain of the binary

SRERERTL SFEN
n-tuples, the ith Walsh-Hadamard function is defined a32

n=1 n=1
é ile X ig’xk

— Q: =
Wall, 50 = (1) 0 =T (3)

S o, xS

n-1 ' n-1 )

where 1 = Z 1222 and x = 2 x22 . Because the set of all Walsh
2:0 2=0

functions on the n-tuples form a complete orthogonal basis, any problem

on the binary n-tuples can be solved equivalently in the corresponding

Walsh domain.

Walsh-Hadamard Description of LFSR

Using the quantities in eqns. 1 and 2 as the exponents of (-1),

we obtain, respectively

n-1
v {t) x(t-1) ® O akyk(t—l)
-1D° = (1D e (%)

and
y, (t) Y, 4(t=1)
LA TN , for 0<k<n (5)

(-1




In view of eqn. 3, eqns. 4 and 5 become

Wal[l, x(t-1)] Wal[a, y(t-1), for k = 0 (6)
k -
wa1[2 ’ Y(t)] L

1

wall2= L Zle1)]. #or 0<%k <n (7

where ;(t) = <yn_1(t),...,y1(t), yo(t)> and a ;'<an_l,...,a],ao>. We
note that eqns. 6 and 7 are insufficient to sustain recursion because
Wal[a,?(t)] is not generated.

Now, for every subset of eqns. 6 and 7 a product can be formed to
yield a unique equation relating ;(t) and ;(t—]). Let 1 for 1 < < 2“,
indicate by its 1's the equations from eqns. 6 and 7 which are multiplied.

Equating the resulting left-hand and right-hand sides, we have

n-1 (o = L) - io
I {wal[2”, y(t)]1} ~ = {Wal[l,x(t-1)] Walla,y(t-1)]}
2=0 '
n-1 i
%L G, St (8)
=1

For convenience, we denote Wal[i, y(t)] by Yi(t) and Wal[l, x(t)] by
X(t). From the property that Walli, y(t)] Wall[j, y(t)] = walli @ i§,y(v)],
where @ 1is extended to denote dyadic addition (component-wise modulo-2

addition on i and j),eqns. 8 yield

X(t-1) Y (t-1), for (odd) 1€ {1,3,...,2"-1} (9)
i-1
(‘5—) @ a
Yi(t) =
¥,(t-1), for (even) 1e{2,6,0.5,2" =2} (10)
2

Eqns. 9 and 10 are capable of sustaining recursion and completely de-

scribing the LFSR operation. In fact, denoting the column vector




S

-

G0, 100 YN(t)]T by Bley . wheve N = 20-1. we ean

9 and 10 in a matrix form

¥(t) = BIX(t-1)] Y(t-1) (11)

where the N x N natrix ﬁ[x(t—l)] < {Bij[x(t-l)]: 1 <1, j <N} has the
following elements:

1, for even i and ; = 1/2

Bij[X] =( X, for odd i and j = (i%l) ® a (12)

0, otherwise
For 1 < £ < N: 1f 1 4is even, then 1 < 1/2 < Zn_]; and if i is odd,
s fw(iglﬂ @® a < N since a_y =1

It is clear from eqn. 12 that E[X], for X # 0, is a sparse matrix

with exactly one nonzero entry in each column and in each row and that
the entry is 1 for the first 2n—1_1 columns and X for the 2n—] succeeding
columns. Thus, E[XI is essentially a permutation matrix involving the
scaling by X of some elements. For example, a 3-stage LFSR with feedback

coefficient vector a = <1 0 1> will have a 7 X 7 B-matrix. Since I @ a =4,

2 ® a=7and3 @ a-=6, we have from eqn. 11, using eqn. 12,

I r T
Yl(t)1 or 0 0 X e 0 0 Y](t—l)—-l
¥, (c) o QR e SR 0 0 0 L, (e-1) |
¥, (t) 0 0 O0X(t-1) 0 0 0 v3(tm1>f

= 1 (13)

Y, (t) o0 1 O 0 0 0 0 Y, (¢-1) | (1

4 4 ‘
Ys(t) 0 & 0 0O 0 0 X(t-1) Ys(t~]):
Y (t) ¥ ¢ 1.5 0 0 0 Y (t-1) |
LY7(t)_ Lo & 0 © 0 X(t=l) 0 | :’7(t—1)d

Returning to eqn. 11, we can express Y(t) in terms of its original

state, ?(0).




¥(t) = B[X(t-1)] B[X(t-2)]... B[X(0)] ¥(0) (14)

The product ﬁ[x(t—l)] BIX(t-2)]... E[X(O)] is clearly also a permu-

tation matrix having 1 or -1 as its nonzero entries. When x(t) = 0,

implying X(t) = 1, the LFSR operates as an oscillator with a sequence
e

period which we will denote by p. In this case, §(p) = ;(0) and hence

§p[1] = T where I is the identity matrix of an appropriate dimension.

OQutput Statistics

We assume a white stationary input so that x(tl) is independent
of but identically distributed as x(tz) for t # t,. This allows the
description of the initial state of the LFSR to be independent of the
input x(t) for t > 0. With E[*] denoting expectation, let wi(t) stand
for E[Y (D)], P(t) for E[Y(t)], and ¥ for E[X(t)]. Then, taking the

expectation of eqn. 14 results in the following transient solution.

- =t -

Y(t) = B [x]y(0) (15)
The steady-state statistics, if they exist (i.e., if ﬁt[x] converges) ,

can be found by equating $(t) to ﬁ(t-l) in the expectation of eqn. 11.

We have

P(t) (I - B[x]) =0 (16)

It is seen from eqn. 16 that if (I - E[)(])-1 exists, the steady-state
&(t) is uniquely 0. This means that all the outputs are independent
and equiprobably 0 or 1. Obviously, for the oscillator case where

X = 1 or -1, a steady-state statistic does not exist except for the
grivial case of Y(0) = 0. Thus, (T - §[l])_1 and (T - E[—l])*l do not

exist.




(3
The eigenvalues of E[x] control the time convergence of the LFSR
output statistics. Indeed, denoting the N ecigenvalucs of ﬁ[x} by
Al,lz,...,AN, some of which may be equal, we may write
Bo[x] = A; ca) + x; €(2) +...+ A; cN) (17)

where the matrices E(l), E(Z),..., E(N) are degerminud from the eigen-
vectors. As t > o, an eigenvalue of a magnitude greater than 1 would
cause ﬁt[x] and hence J(t) to explode, which is not allowed physically.
Thus |Xil £1for 1 <i<N. If the magnitude of an eigenvalue is 1,
eqns. 15 and 17 indicate that, at steady state, @(t) would be a non-
decaying periodic function. 1In view of the constantly growing uncer-
tainty introduced by x(t), such a §(t) is possible if and only if
x € {1, -1}. This implies determinism right from the outset. Thus, if
,xl < 1, we expect the contents of LFSR to ultimately reach maximum
entropy; i.e., y(t) = O.

The above observations may be summarized as follows: (i) |Xi| <
for all 1 < i < N; (i1) |x| = 1 if and only if |xi| e {1,0} for any
1 <i < Nwith at least one eigenvalue having a unit magnitude; and
(iii1) |x] < 1 if and only if |xi| <1 for all 1 < i < N. From eqgn. 17,
if Am is the eigenvalue of the greatest magnitude and || < 1, then the
entries in ﬁt[xl will decay to zero at least as fast as lkmlt,
The joint probability distribution of y(t) can be obtained from

@(t) via the Walsh-transform relationship. By definition,

N
V() = ) Priy(c) = 1] Walli,2] (18)
2=0

The inverse transformation of eqn. 18 is

11 08 089




1 &2

Prly(e) = 1] = 27°[1 + ] ¥, (6) Walld, ii)] (19)

i=l

We may conclude that, for |x| < 1, wi(t) converges to 0 and Pr(y(t) = }]

—n &
converges to 2 , also at least as fast as Ikmlt.

For the example considered in eqn. 13 the output statistic y(t) =

Pr[§(t)=<001>] is plotted versus t in Fig. 2 for an initial state <001> for
two values of x. For this maximum-length 3-stage LFSR (p=7), Ai =
x4/7 exp(2mi VL L7 = B2 s ves Lo ‘Thus), lAi’ = XA/7. We observe from

Fig. 2 that (i) Y(t) = 0 for t = 1 and t = 2 irrespective of x(t) for th«

= |
given initial state <0 0 1>, as expected, (ii) y(t) converges to 2 ~ =

0.125, as predicted by eqn. 19; and (iii) |y(t+7) - 2“31/ ly(t) - 273 = X

Convergence is faster for a smaller Y.
Conclusion

The behaviour of linear-feedback shift registers is neatly captured
by a Walsh-Hadamard representation in the form of a matrix recursive equa-
tion which can be written by inspection and which yields the output sta-
tistics forva stochastic input quite easily. Because the representation
is over the reals where our intuition is stronger, it facilitates our
study of the transient and convergence properties in terms of the eigen-

values of a permutation matrix.
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